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I. Gonality

Let X be a smooth projective curve of genus g ≥ 1 and
let L be a line bundle on X .

gon(X ) = min{ degf | f : X � P1}
= min{ deg(D) |h0(OX (D)) = 2}

Geometric Riemann-Roch Theorem
h0(OX (D)) = deg(D)− dim〈D〉KX

for D ≥ 0

Geometric meaning of gonality of X

I gon(X ) = k if and only if in the canonical embedding

1. any (k − 1)-points are in general position
2. but there exists a k-secant (k − 2)-plane.
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Gonality of smooth plane curve of degree d (Namba, 1979)

1. A projection from a point p ∈ X induces a morphism of
degree d − 1 to P1. (∴ gon(X ) ≤ d − 1.)

2. Let D be an effective divisor with deg(D) ≤ d − 1 and
h0(D) = 2.

3. By the geometric RR thm, h0(D) = 2 = deg(D)− dim〈D〉K .

4. By the definition, h0(K )− h0(K (−D)) = dim〈D〉K + 1.

5. Note that KX = OX (d − 3).

6. We have the following exact sequence;
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D/P2 (d − 3) → ID/X (d − 3) → 0
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7. Any d − 2 points in P2 imposes independent conditions on
curves of degree d − 3, i.e., for any divisor D of degree d − 2,
H0(OP2(d − 3))→ H0(OD) is surjective.

8. Any d − 1 points in P2 fails to impose independent conditions
on curves of degree d − 3 if and only if they are collinear.

9. gon(X ) = d − 1 .



Gonality

Y : a plane curve of degree d with δ number of nodes and
φ : X → Y : a normalization of Y .
I gon(X ) = d − 2 if δ ≤ d − 3.

1. KX = φ∗OY (d − 3)(−∆), ∆ :=the set of nodes.
2. any d − 3 points in P2 imposes independent conditions on

curves of degree d − 3 passing through ∆, i.e., for any divisor
D of degree d − 3,
H0(OP2(d − 3))→ H0(OD) is surjective.

3. any d − 2 points in P2 fails to impose independent conditions
on curves of degree d − 3 if and only if they with one node
point are collinear.

I g(X ) = (d−1)(d−2)
2 − δ and gon(X ) = d − 2.

Brill-Noether Theorem
gon(X ) ≤ [g+3

2 ], and
the equality holds if X is a general curve of genus g .
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Clifford index

Clifford Index of X
I Clifford index of a line bundle L ;

Cliff(L) = deg L − 2(h0(L)− 1)

= g + 1− (h0(L) + h0(KXL−1)).

I The smaller number is that L has more sections for its degree.

I Cliff(L) = Cliff(KXL−1)

I Clifford index of a curve X ;

Cliff(X ) = min{Cliff(L) : h0(L) ≥ 2, deg(L) ≤ g − 1}
= min{Cliff(L) : h0(L) ≥ 2, h1(L) ≥ 2}.



Clifford index

Clifford Theorem
Cliff(X ) ≥ 0 and

the equality holds if and only if X is a hyperelliptic

Coppens-Martens Theorem (1991)
Any reduced irr. non-deg. and linearly normal curve X of degree

d ≥ 4r − 7 in Pr (r ≥ 2) has a (2r − 3)-secant (r − 2)-plane.

There are smooth curves inPr without any (2r − 2)-secant
(r − 2)-plane, so they get the following famous result.

Coppens-Martens Theorem
Cliff(X ) = Gon(X )− 3 or Cliff(X ) = Gon(X )− 2

Cliff(X ) = k − 2 if and only if X is a general k-gonal curve
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Clifford index of smooth plane curve (Namba, 1979)

1. Let X ∈ P2 be a smooth plane curve of degree d .

2. We know that gon(X ) = d − 1. (Cliff(g 1
d−1) = d − 3)

3. Cliff(g 2
d ) = d − 4.

4. Let g r
c+2r be a complete linear system computing the Clifford

index of X . Then r ≥ 2 and c ≤ (d − 4).

5. Assume that r ≥ 3 and c ≤ (d − 5). Then g r
c+2r induces a

birational morphism by the KKM theorem.

6. If C ′ := ϕg r
c+2r

(X ) is not contained in a hyperquadric of rank
≤ 4, then by the exact sequence

0→ IC ′(2)→ OPr (2)→ OC ′(2)→ 0,

we have h0(2g r
c+2r ) ≥ 4r − 2 and hence

c ≤ Cliff (2g r
c+2r ) ≤ 2c − 4r + 6 ⇒ c + 2r ≥ 6r − 6.
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Clifford index of smooth plane curve (Namba, 1979)

7 By the theorem of Coppens-Martens, ∃M with
deg(M) = (2r − 3) and 〈M〉g r

e
= (r − 2).

8 Projection from M to P1 is induced by a linear system g 1
≤(d−2)

9 It is a contradiction to the gonality of X .

10 If C ′ := ϕg r
c+2r

(X ) is contained in a hyperquadric of rank ≤ 4,

then g r
c+2r = g 1

e + h1
e′ and g = 2c + 5

11 It is a contradiction since g > 2c + 5.



Gonality and Clifford index

Coppens-Kato Theorem (1990)

If Y : a plane curve with d ≥ 2l + 4(l ≥ 3) and δ < (l − 1)d
and φ : X → Y : a normalization of Y ,

then g 1
2d−9 = g 1

e + D2d−9−e ,
g 1
e : base point free linear system on X cut out

by a pencil of lines in P2.

Corollary

If φ : X → Y : as above, then Cliff(X ) = d − 4.

Proof.
Assume that Cliff(X ) ≤ d − 5 and L computes the Clifford index.
If h0(L) ≤ 3, then degL ≤ (d − 5) + 2(h0(L)− 1) ≤ 2d − 9.
Contradiction to Coppens-Kato Theorem. If h0(L) ≥ 4, then by
the secant theorem of Coppens and Martens, we get a
contradiction.
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Normal generation

I L is normally generated if L is very ample and
SymnH0(X ,L)→ H0(X ,L⊗n) is surjective for all n ≥ 0.

I Noether Theorem
The canonical bundle is normally generated unless X is a
hyperelliptic.

I Castelnuovo, Mattuck, Mumford and Fujita proved
any line bundle of degree at least 2g + 1 is normally generated.

I Lange and Martens showed
every vey ample line bundle of degree 2g is normally
generated unless X is a hyperelliptic.

I Arbarello, Cornalba, Griffiths and Harris stated
A general line bundle of degree [ 3

2 g + 2] or greater defines a
projectively normal embedding if X is a sufficiently general
curve of genus g .
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Normal generation: extremal line bundle

Green-Lazarsfeld Theorem
For any smooth curve X of genus g with a very ample line bundle L,

if deg(L) ≥ 2g + 1− 2 · h1(L)− Cliff(X ),
then L is normally generated.

I Note that the condition
deg(L) ≥ 2g + 1− 2 · h1(L)− Cliff(X ) is equivalent to the
assumption that Cliff(L) < Cliff(X ).

I A very ample line bundle L is extremal if Cliff(L) = Cliff(X )
and L fails to be normally generated.

Question;

I Find an extremal line bundle.

I Classify the normally generated line bundles L with
Cliff(L) = Cliff(X ) + α for small α.
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Theorem (Green-Lazarsfeld (1986))

Let N(c) = max{ (c+2)(c+3)
2 , 10c + 6}, g > N(c) , where

c = Cliff(X ). X is neither hyperelliptic nor bielliptic.
L is an extremal line bundle if and only if (X ,L) is one of;

X h1(L) φL
I. Has a g 1

c+2 0 Embeds X with a 4-secant
line

c = 2f ≥ 4
X is a double covering 1 Embeds X with a 4-secant

II. φ : X → Y ⊆ P2 line
of a smooth plane curve

Y of degree f+2

III. as in II 0 Embeds X with a 6-secant
conic but no 4-secant line

Note that for a general curve X of genus g , g = 2c + 1 or
g = 2c + 2.
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Theorem (GL Theorem 3)

• X : a smooth curve of genus g

• L : a very ample line bundle on X with

degL >

{
3g−3

2 , L is special
3g−3

2 + 2, L is nonspecial.
(1)

If L fails to be normally generated, then there is an effective divisor
R such that ϕL(R) fails to impose independent conditions on
quadrics and A ' L(−R) satisfies

I degA ≥ g−1
2 ,

I Cliff(A) ≤ Cliff(L),

I h1(A) ≥ h1(L) + 2 and h0(A) ≥ 2.



Castelnuovo’s genus bound
Let g r

d : birationally very ample with d − 1 = m(r − 1) + ε,
0 ≤ ε ≤ r − 2

g ≤ π(d , r) := m(m−1)
2 (r − 1) + mε.

If r = 2, then π(d , 2) = (d−1)(d−2)
2 .

If r = 3 and d is even, then d − 1 = 2m + 1, whence g ≤ (d−2
2 )2.

If r = 3 and d is odd, then d − 1 = 2m, whence g ≤ (d−1
2 )(d−3

2 ).

Kim-Kim Theorem (2004)

π(d , r) ≤ π(d − 2, r − 1) for d ≥ 3r − 2, r ≥ 3

If d ≥ 7, then (d−1
2 )(d−3

2 ) = π(d , 3) ≤ π(d − 2, 2) = (d−3)(d−4)
2 .
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KKM Theorem (1990)
Let g r

c+2r : compute the Clifford index c of X , d ≤ g − 1, r ≥ 3.
Then the g r

c+2r is birationally very ample
unless X is hyperelliptic or biellpitic.

I So, if g r
d : compute the Clifford index c of X with proper range

of d , r ≥ 3, then the g r
d is birationally very ample.

I But the genus is big compared to d , r , g r
d is not birational by

the Castelnuovo’s genus bound.

I Therefore g r
d gives a multiple covering of the plane curves or

P1.
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Note for g > (c+2)(c+3)
2

A smooth plane curve X of degree d ≥ 4

I g = (d−1)(d−2)
2 , c := Cliff(X ) = d − 4. Therefore,

g = (c+2)(c+3)
2 .

I D = H − Z4, where Z4 is 4 collinear points and H is a line
section of X .

I KX − D is very ample since h0(D + p + q) = 1 for any
p, q ∈ X .

I h0(KX − D) = (2g − 2)− (d − 4)− g + 1 + 1. Therefore
Cliff(KX − D) = d − 4.

I h0(KX − D)− h0(KX (−D − Z4)) = 2 =< D >KX−D +1.

I KX − D is an extremal line bundle with h1(KX − D) = 1.



1. An extremal line bundle with h1(L) ≥ 2



An extremal line bundle with h1(L) ≥ 2

Theorem(CKK, 2007)

Assume that
• X is neither hyperelliptic nor bielliptic with g ≥ 2c + 5, where

g is the genus of X and c is the Clifford index of X .

• A very ample line bundle M computes the Clifford index of X
with (3c/2) + 3 < degM≤ g − 1,

then

I g = 2c + 5 and M = F ⊗ F ′ , where |F|, |F ′| are pencils of
degree c + 2,

I M⊗F is an extremal line bundle with h0(M⊗F) ≥ 2, and
h1(M⊗F) = 2.

I M is half-canonical unless X is a (c + 2)/2-fold covering of
an elliptic curve.
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Theorem (CKK)

If

• S ⊂ Pr be a general K 3 surface with Pic(S) =< H > where
H is a hyperplane section and degS = 2r − 2 and

• X ⊂ S be a smooth irreducible curve and X ∈ |2H|,
then

I OX (1) is half-canonical, normally generated, and computes
the Clifford index of X ,

I while there is a base point free pencil |F| such that
OX (1)⊗F is an extremal line bundle with
h1(OX (1)⊗F) = 2.



Proof

1. Since X ∈ |2H|, OX (2) is the canonical bundle of X with
g(X ) = (2H)2/2 + 1 = 4r − 3, deg(X ) = (2H)(H) = 4(r − 1).
(Note that deg(S) = 2r − 2.)

2. According to Green’s and Lazarsfeld’s method of computing
the Clifford index of smooth curves on a K 3 surface, OX (1)
computes the Clifford index of X . ∴ Cliff(X ) = 2r − 4.

3. g(X ) ≥ 2c + 5 and degOX (1) ≤ g(X )− 1.

4. The curve X lies on a hyperquadric of rank ≤ 4.

5. The pencil |F| is induced by the ruling of the hyperquadric.

6. One can prove that OX (1)⊗F is an extremal line bundle on
X with h1(L) = 2.

Hence for any g ≡ 1(mod 4), there is a smooth curve X of genus g
such that X has a extremal line bundle and a non-extremal line

bundle which compute the clifford index of X .
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2. Nearly extremal line bundles



Nearly extremal line bundles(Akohori(2005), CKK(in progress))

Assume that g ≥ max{ (c+4)(c+3)
2 , 2c + 13}, c := Cliff(X ), f :=

c

2
and that X is neither hyperelliptic nor bielliptic. Let L is an line
bundle on X with deg(L) = 2g − 1− 2h1(L)− c, i.e.
Cliff(L) = Cliff(X ) + 1. Then L is very ample and fails to be
normally generated if and only if the pair (X ,L) is the following
cases:

(i) φ : C
m:1−→ P1, c + 2 ≤ m ≤ c + 3,

L ' K − g 1
m − Bc+3−m + R4, R4 ∈ C4, h1(L) = 0

(ii) φ : C
2:1−→ C ′ ⊂ P2, deg(C ′) = f + 2, c = 2f ≥ 4

L ' K − φ∗g 2
f +2 + R5, R5 ∈ C5, h1(L) = 0

(iii) φ : C
3:1−→ C ′ ⊂ P2, deg(C ′) = 5+c

3 =: h ≥ 3,

L ' K − φ∗g 2
h + R6, R6 ∈ C6, h1(L) = 0

(iv) φ : C
3:1−→ C ′ ⊂ P2, deg(C ′) = 5+c

3 =: h ≥ 4,

L ' K − φ∗g 2
h + R4, R4 ∈ C4, h1(L) = 1

(v) φ : C
'−→ C ′ ⊂ P2, L ' K − g 2

c+5 + R4, R4 ∈ C4, h1(L) = 1

(vi) φ : C
'−→ C ′ ⊂ P2, L ' K − g 2

c+5 + R6, R6 ∈ C6, h1(L) = 0



Proof

I If L is extremal, then by the GL Theorem 3, there exists a line
bundle A with Cliff(A) = Cliff(X ) + 1 (or
Cliff(A) = Cliff(X )) and h0(A) ≥ 2 and h1(A) ≥ 2.

I The following Ballico-Keem theorem tells that a special linear
series |KXA−1| = g r

2r+c+1, r ≥ 3 is birationally very ample.

I The condition g > max{ (c+4)(c+3)
2 , 2c + 13} gives that any

morphism to Pr , r ≥ 3 can not be birationally very ample by
the Castelnuovo genus bound.

I So |KXA−1| induces a covering morphism to a plane curve or
|KXA−1| is a pencil.

Theorem (BK, 1991)
Let a |D| = g r

2r+c+1, r ≥ 3 be a special linear series without
base point on curve X with Clifford index c ≥ 1

such that r(KX − D) ≥ 1. Then |D| is birationally very ample.
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Extremal line bundles(CKK(in progress))

g > max{π(c + 4, 2), 2c + 11} where c := Cliff(X ) and f :=
c

2
and that X is neither hyperelliptic nor elliptic-hyperelliptic. Let L
is an line bundle on X with degL := 2g − 2h1(L)− c . Then L is
very ample and fails to be normally generated if and only if the
pair (X ,L) is the following cases:

X h1(L) L conditinos of Ra ∈ Xa

I φ : X
(c + 2) : 1
−−−−−−→ P1 0 KX − g1

c+2 + R4 deg(F , R4) ≤ 1,

φ doesn’t factor through 〈R4〉L: 4-secant line ∀F ∈ g1
c+2

ψ : X
2:1→ Y ⊂ P2

for a smooth Y
degY = f + 2

II. φ : X
2 : 1−−−→ Y ⊂ P2 1 KX − φ∗g2

f + R4 R4 ≤ φ∗(H),H ∈ |OY (1)|
for a smooth Y 〈R4〉L: 4-secant line deg(φ∗(Q), R4) ≤ 1,

with degY = f + 2 ∀H ∈ |OY (1)|,Q ≤ H

III. As in II 0 KX − φ∗g2
f + R6 deg(φ∗(Q), R6) ≤ 1, ∀Q ∈ Y

(1) φL(R6) ⊂ Ω deg(φ∗(H), R6) ≤ 2,
for an irreducible ∀H ∈ |OY (1)|

conic Ω̃ in the R6 ≤ φ∗(Ω.Y )

plane 〈R6〉L Ω := (φ ◦ φ−1
L )(Ω̃) ∈ |OP2 (2)|

III. As in II 0 KX − φ∗g2
f + R6 deg(φ∗(Q), R6) ≤ 1, ∀Q ∈ Y

(2) φL(R6) ⊂ L̃1 ∪ L̃2 (φ ◦ φ−1
L )(L̃i ) = Li : line

as a scheme in the deg(φ∗(Hi ), R6) = 3
plane 〈R6〉L ∀Hi := Li .Y , i = 1, 2



3. Multiple coverings of plane curves with small number of
double points

In this talk, I just deal with the multiple covering of smooth plane
curves.



Theorem(Multiple coverings of smooth plane curves)

X : a simple n-fold covering φ : X → Y for a smooth plane curve
Y of degree d with g(X ) > n(g(Y )) + n(n − 1)d + 4n2(n − 1) .
L : a line bundle, degL ≥ 2g − 2h1(X ,L)− Cliff(X )− (n − 2).
Then, L is very ample and fails to be normally generated if and
only if L corresponds to one of the cases in the following table.
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Theorem(Multiple coverings of smooth plane curves)

X : a simple n-fold covering φ : X → Y for a smooth plane curve
Y of degree d with g(X) > n(g(Y)) + n(n− 1)d + 4n2(n− 1).
L : a line bundle, degL ≥ 2g − 2h1(X ,L)− Cliff(X )− (n − 2).
Then, L is very ample and fails to be normally generated if and
only if L corresponds to one of the cases in the following table.

Remark

I If deg(Y ) is large compared with n, the genus bound
g > n(g(Y )) + n(n− 1)d + 4n2(n− 1) is not so restrictive by
Riemann-Hurwitz theorem which tells that
g ≥ n(g(Y ))− (n − 1).

I Theorem explores necessary and sufficient conditions for the
failure of normal generation of a very ample line bundle L
with Cliff(L) ≤ Cliff(X ) + (n − 2), i.e.,
degL ≥ 2g − 2h1(L)− Cliff(X )− (n − 2).



description for L h1(X ,L);
Cliff(L)

conditions of Ra

I
L ' KX − φ∗g2

d + R4,
dim 〈R4〉L = 1

1;
Cliff(X ) + (n − 2)

R4 ≤ φ∗H for some H ∈ g2
d ;

deg(R4,Φ−1(Q)) ≤ 1

for any Q ∈ ψ(Y ) ⊂ P2

II

L ' KX − (φ∗g1
d−1 + B) + R4,

dim 〈R4〉L = 1;
B is a base locus

of KX ⊗ L−1(R4)

0;
Cliff(X ) + k,

0 ≤ k ≤ n − 2,
k := deg(B)

g1
d−1 = g2

d (−Q) for some Q ∈ Y ;

deg(R4, φ
∗(H − Q)) ≤ 1

for any H ∈ g2
d with H ≥ Q;

R4 
 φ∗(H)) if B ≤ φ∗(Q)
and deg(φ∗(Q)− B) ≤ 2;

degB ≤ n − 2, deg(B, R4) = 0

III

L ' KX − φ∗g2
d + R6,

R6 ≤ ϕL(X ) ∩ Ω̃

for an irreducible conic Ω̃
in the plane 〈R6〉L;

ϕL(X ) has no trisecant line

0;
Cliff(X ) + (n − 2)

deg(R6, φ
−1(Q)) ≤ 1 for any Q ∈ Y ;

deg(R6, φ
∗(H)) ≤ 2 for any H ∈ g2

d ;

R6 ≤ φ∗(Ω) for some Ω ∈ |2g2
d | with

Ω 6= H1 + H2 for any Hi ∈ g2
d

IV

L ' KX − φ∗g2
d + R6

R6 = R
(1)
3 + R

(2)
3 ,

R
(i)
3 := (R6, ϕL(X ) ∩ Li )

Li : a line in the plane 〈R6〉L

0;
Cliff(X ) + (n − 2)

deg(R6, φ
−1(Q)) ≤ 1 for any Q ∈ Y ;

R6 = R
(1)
3 + R

(2)
3 with

R
(i)
3 ≤ φ

∗(Hi ) for some Hi ∈ g2
d

Remark
I This theorem gives not only concrete constructions but also the existence of large family of such nearly

extremal line bundles L, since L can be constructed by choosing divisors Ra on X in the right boxes of the
table.
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Lemma A
Assume that φ : X → Y satisfy the hypotheses in Theorem.

Let M be a globally generated line bundle
on X with degM≤ g − 1 and h0(M) ≥ 2.

If Cliff(M) ≤ nd − 4, then
M' φ∗(g 2

d ) or M' φ∗(g 2
d )(−Q) where Q ∈ Y .

In particular, we obtain Cliff(X ) = nd − n − 2,.

Proof of the Theorem
Step 1. To apply Green-Lazarsfeld Theorem, check the condition (1)

in (GL Theorem 3), i.e.,

degL >

{
3g−3

2 , L is special
3g−3

2 + 2, L is nonspecial.
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Step 2. According to GL Theorem, there is a line bundle

A ' L(−R), R > 0,

such that both A and R satisfy all the conditions in that
theorem, i.e.,

I R fails to impose independent conditions on quadrics and
I degA ≥ g−1

2 ,
I Cliff(A) ≤ Cliff(L),
I h1(A) ≥ h1(L) + 2 and h0(A) ≥ 2.

Step 3. Prove that degA ≥ g − 1. Therefore degKA−1 ≤ g − 1.

Step 4. Apply Lemma A, we get

L ' KX − φ∗g 2
d + R or L ' KX − (φ∗g 2

d (−(Q)) + B) + R,

for some effective divisor R on X which fails to impose
independent conditions on quadrics in PH0(L)∗.
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Step 5. Assume L ' KX − φ∗g 2
d + R. Since Cliff(A) ≤ Cliff(L),

Cliff(L) = nd − 4. Hence degR = 6− 2h1(L) by the RR
Theorem. The condition h1(X ,L) ≤ h1(X ,A)− 2 forces
h1(L) ≤ 1. ∴ L corresponds to one of the following cases;

Case 1. L ' KX − φ∗g 2
d + R4 with h1(L) = 1.

Case 2. L ' KX − φ∗g 2
d + R6 with h1(L) = 0.

Step 6. Assume L ' KX − (φ∗g 2
d (−Q) + B) + Ra, Ra ∈ X (a). Since

h0(KX ⊗A−1) = h1(A) = 2, we have h1(L) = 0.
Note that dim〈Ra〉L = a− 3 due to RR Theorem.
Since Cliff(A) ≤ Cliff(L) by GL Theorem 3, we have
a ≥ 2(a− 3) + 2, i.e., a ≤ 4.
If a < 4, then L ' KX − (φ∗g 2

d (−Q) + B − P) + (Ra − P) for
P ≤ Ra which is not very ample. Thus we get a = 4 and
deg(B,R4) = 0. Therefore L is

Case 3. L ' KX − (φ∗g 2
d (−Q) + B) + R4 with h1(L) = 0, Q ∈ Y .
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If a < 4, then L ' KX − (φ∗g 2

d (−Q) + B − P) + (Ra − P) for
P ≤ Ra which is not very ample. Thus we get a = 4 and
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Thank you!!!
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