Normal generation of line bundles on smooth curves

> Youngook Choi (Yeungnam University)

Joint work with Prof. S. Kim (Chungwoon University) and Prof Y. Kim (HUFS)

December 20. 2012
at Rivera, Busan, Korea

Outline

1. Gonality, Clifford index and normal generation

- Gonality
- Clifford index
- Normal generation

2. Classification of normally generated line bundles

- An extremal line bundle with $h^{1}(\mathcal{L}) \geq 2$
- Nearly Extremal line bundles
- Multiple coverings of plane curves

I. Gonality

Let X be a smooth projective curve of genus $g \geq 1$ and let \mathcal{L} be a line bundle on X.

I. Gonality

Let X be a smooth projective curve of genus $g \geq 1$ and let \mathcal{L} be a line bundle on X.

$$
\begin{aligned}
\operatorname{gon}(X) & =\min \left\{\operatorname{deg} f \mid f: X \rightarrow \mathbb{P}^{1}\right\} \\
& =\min \left\{\operatorname{deg}(D) \mid h^{0}\left(\mathcal{O}_{X}(D)\right)=2\right\}
\end{aligned}
$$

I. Gonality

Let X be a smooth projective curve of genus $g \geq 1$ and let \mathcal{L} be a line bundle on X.

$$
\begin{aligned}
\operatorname{gon}(X) & =\min \left\{\operatorname{deg} f \mid f: X \rightarrow \mathbb{P}^{1}\right\} \\
& =\min \left\{\operatorname{deg}(D) \mid h^{0}\left(\mathcal{O}_{X}(D)\right)=2\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \text { Geometric Riemann-Roch Theorem } \\
& h^{0}\left(\mathcal{O}_{X}(D)\right)=\operatorname{deg}(D)-\operatorname{dim}\langle D\rangle_{K_{X}} \text { for } D \geq 0
\end{aligned}
$$

I. Gonality

Let X be a smooth projective curve of genus $g \geq 1$ and let \mathcal{L} be a line bundle on X.

$$
\begin{aligned}
\operatorname{gon}(X) & =\min \left\{\operatorname{deg} f \mid f: X \rightarrow \mathbb{P}^{1}\right\} \\
& =\min \left\{\operatorname{deg}(D) \mid h^{0}\left(\mathcal{O}_{X}(D)\right)=2\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \text { Geometric Riemann-Roch Theorem } \\
& h^{0}\left(\mathcal{O}_{X}(D)\right)=\operatorname{deg}(D)-\operatorname{dim}\langle D\rangle_{K_{X}} \text { for } D \geq 0
\end{aligned}
$$

Geometric meaning of gonality of X

- gon $(X)=k$ if and only if in the canonical embedding

1. any $(k-1)$-points are in general position
2. but there exists a k-secant $(k-2)$-plane.

Gonality of smooth plane curve of degree d (Namba, 1979)

1. A projection from a point $p \in X$ induces a morphism of degree $d-1$ to $\mathbb{P}^{1} .(\therefore \operatorname{gon}(X) \leq d-1$.
2. Let D be an effective divisor with $\operatorname{deg}(D) \leq d-1$ and $h^{0}(D)=2$.
3. By the geometric RR thm, $h^{0}(D)=2=\operatorname{deg}(D)-\operatorname{dim}\langle D\rangle_{K}$.
4. By the definition, $h^{0}(K)-h^{0}(K(-D))=\operatorname{dim}\langle D\rangle_{K}+1$.
5. Note that $K_{X}=\mathcal{O}_{X}(d-3)$.

Gonality of smooth plane curve of degree d (Namba, 1979)

1. A projection from a point $p \in X$ induces a morphism of degree $d-1$ to $\mathbb{P}^{1} .(\therefore \operatorname{gon}(X) \leq d-1$.
2. Let D be an effective divisor with $\operatorname{deg}(D) \leq d-1$ and $h^{0}(D)=2$.
3. By the geometric RR thm, $h^{0}(D)=2=\operatorname{deg}(D)-\operatorname{dim}\langle D\rangle_{K}$.
4. By the definition, $h^{0}(K)-h^{0}(K(-D))=\operatorname{dim}\langle D\rangle_{K}+1$.
5. Note that $K_{X}=\mathcal{O}_{X}(d-3)$.

6 . We have the following exact sequence;

$$
0 \rightarrow I_{X / \mathbb{P}^{2}}(d-3) \rightarrow I_{D / \mathbb{P}^{2}}(d-3) \rightarrow I_{D / X}(d-3) \rightarrow 0
$$

Gonality of smooth plane curve of degree d (Namba, 1979)

1. A projection from a point $p \in X$ induces a morphism of degree $d-1$ to $\mathbb{P}^{1} .(\therefore \operatorname{gon}(X) \leq d-1$.)
2. Let D be an effective divisor with $\operatorname{deg}(D) \leq d-1$ and $h^{0}(D)=2$.
3. By the geometric RR thm, $h^{0}(D)=2=\operatorname{deg}(D)-\operatorname{dim}\langle D\rangle_{K}$.
4. By the definition, $h^{0}(K)-h^{0}(K(-D))=\operatorname{dim}\langle D\rangle_{K}+1$.
5. Note that $K_{X}=\mathcal{O}_{X}(d-3)$.

6 . We have the following exact sequence;

$$
\begin{array}{rllllll}
0 \rightarrow \quad & \mathcal{I}_{X / \mathbb{P}^{2}}(d-3) & \rightarrow & I_{D / \mathbb{P}^{2}}(d-3) & \rightarrow & \mathcal{I}_{D / X}(d-3) & \rightarrow \\
& & \rightarrow & 0 \\
\mathcal{O}_{\mathbb{P}^{2}}(-X)(d-3) & \rightarrow & & & \mathcal{O}_{X}(-D)(d-3) & \rightarrow & 0
\end{array}
$$

Gonality of smooth plane curve of degree d (Namba, 1979)

1. A projection from a point $p \in X$ induces a morphism of degree $d-1$ to $\mathbb{P}^{1} .(\therefore \operatorname{gon}(X) \leq d-1$.
2. Let D be an effective divisor with $\operatorname{deg}(D) \leq d-1$ and $h^{0}(D)=2$.
3. By the geometric RR thm, $h^{0}(D)=2=\operatorname{deg}(D)-\operatorname{dim}\langle D\rangle_{K}$.
4. By the definition, $h^{0}(K)-h^{0}(K(-D))=\operatorname{dim}\langle D\rangle_{K}+1$.
5. Note that $K_{X}=\mathcal{O}_{X}(d-3)$.
6. We have the following exact sequence;

$$
\begin{array}{rllllll}
0 \rightarrow I_{X / \mathbb{P}^{2}}(d-3) & \rightarrow & I_{D / \mathbb{P}^{2}}(d-3) & \rightarrow & \mathcal{I}_{D / X}(d-3) & \rightarrow & 0 \\
& & \rightarrow & \mathcal{O}_{X}(-D)(d-3) & \rightarrow & 0
\end{array}
$$

7. Any $d-2$ points in \mathbb{P}^{2} imposes independent conditions on curves of degree $d-3$, i.e., for any divisor D of degree $d-2$, $H^{0}\left(\mathcal{O}_{\mathbb{P}^{2}}(d-3)\right) \rightarrow H^{0}\left(\mathcal{O}_{D}\right)$ is surjective.
8. Any $d-1$ points in \mathbb{P}^{2} fails to impose independent conditions on curves of degree $d-3$ if and only if they are collinear.
9. $\operatorname{gon}(X)=d-1$.

Gonality

Y : a plane curve of degree d with δ number of nodes and $\phi: X \rightarrow Y:$ a normalization of Y.

- $\operatorname{gon}(X)=d-2$ if $\delta \leq d-3$.

1. $\mathcal{K}_{X}=\phi^{*} \mathcal{O}_{Y}(d-3)(-\Delta), \Delta:=$ the set of nodes.
2. any $d-3$ points in \mathbb{P}^{2} imposes independent conditions on curves of degree $d-3$ passing through Δ, i.e., for any divisor D of degree $d-3$, $H^{0}\left(\mathcal{O}_{\mathbb{P}^{\notin}}(d-3)\right) \rightarrow H^{0}\left(\mathcal{O}_{D}\right)$ is surjective.
3. any $d-2$ points in \mathbb{P}^{2} fails to impose independent conditions on curves of degree $d-3$ if and only if they with one node point are collinear.

- $g(X)=\frac{(d-1)(d-2)}{2}-\delta$ and $\operatorname{gon}(X)=d-2$.

Gonality

Y : a plane curve of degree d with δ number of nodes and $\phi: X \rightarrow Y:$ a normalization of Y.

- $\operatorname{gon}(X)=d-2$ if $\delta \leq d-3$.

1. $\mathcal{K}_{X}=\phi^{*} \mathcal{O}_{Y}(d-3)(-\Delta), \Delta:=$ the set of nodes.
2. any $d-3$ points in \mathbb{P}^{2} imposes independent conditions on curves of degree $d-3$ passing through Δ, i.e., for any divisor D of degree $d-3$, $H^{0}\left(\mathcal{O}_{\mathbb{P}^{\notin}}(d-3)\right) \rightarrow H^{0}\left(\mathcal{O}_{D}\right)$ is surjective.
3. any $d-2$ points in \mathbb{P}^{2} fails to impose independent conditions on curves of degree $d-3$ if and only if they with one node point are collinear.

- $g(X)=\frac{(d-1)(d-2)}{2}-\delta$ and $\operatorname{gon}(X)=d-2$.

Brill-Noether Theorem

$$
\operatorname{gon}(X) \leq\left[\frac{g+3}{2}\right], \text { and }
$$

the equality holds if X is a general curve of genus g.

Clifford index

Clifford Index of X

- Clifford index of a line bundle \mathcal{L};

$$
\begin{aligned}
\operatorname{Cliff}(\mathcal{L}) & =\operatorname{deg} \mathcal{L}-2\left(h^{0}(\mathcal{L})-1\right) \\
& =g+1-\left(h^{0}(\mathcal{L})+h^{0}\left(\mathcal{K}_{X} \mathcal{L}^{-1}\right)\right)
\end{aligned}
$$

- The smaller number is that \mathcal{L} has more sections for its degree.
- $\operatorname{Cliff}(\mathcal{L})=\operatorname{Cliff}\left(\mathcal{K}_{X} \mathcal{L}^{-1}\right)$
- Clifford index of a curve X;

$$
\begin{aligned}
\operatorname{Cliff}(X) & =\min \left\{\operatorname{Cliff}(\mathcal{L}): h^{0}(\mathcal{L}) \geq 2, \operatorname{deg}(\mathcal{L}) \leq g-1\right\} \\
& =\min \left\{\operatorname{Cliff}(\mathcal{L}): h^{0}(\mathcal{L}) \geq 2, h^{1}(\mathcal{L}) \geq 2\right\}
\end{aligned}
$$

Clifford index

Clifford Theorem
$\operatorname{Cliff}(X) \geq 0 \quad$ and
the equality holds if and only if X is a hyperelliptic

Clifford index

Clifford Theorem

$$
\operatorname{Cliff}(X) \geq 0 \quad \text { and }
$$

the equality holds if and only if X is a hyperelliptic

Coppens-Martens Theorem (1991)
Any reduced irr. non-deg. and linearly normal curve X of degree $d \geq 4 r-7$ in $\mathbb{P}^{r}(r \geq 2)$ has a $(2 r-3)$-secant $(r-2)$-plane.

Clifford index

Clifford Theorem
$\operatorname{Cliff}(X) \geq 0$ and
the equality holds if and only if X is a hyperelliptic

Coppens-Martens Theorem (1991)
Any reduced irr. non-deg. and linearly normal curve X of degree $d \geq 4 r-7$ in $\mathbb{P}^{r}(r \geq 2)$ has a $(2 r-3)$-secant $(r-2)$-plane.

There are smooth curves in \mathbb{P}^{r} without any $(2 r-2)$-secant ($r-2$)-plane, so they get the following famous result.

Clifford index

Clifford Theorem

$$
\operatorname{Cliff}(X) \geq 0 \text { and }
$$

the equality holds if and only if X is a hyperelliptic

Coppens-Martens Theorem (1991)
Any reduced irr. non-deg. and linearly normal curve X of degree $d \geq 4 r-7$ in $\mathbb{P}^{r}(r \geq 2)$ has a $(2 r-3)$-secant $(r-2)$-plane.

There are smooth curves in \mathbb{P}^{r} without any $(2 r-2)$-secant ($r-2$)-plane, so they get the following famous result.

Coppens-Martens Theorem

$$
\operatorname{Cliff}(X)=\operatorname{Gon}(X)-3 \text { or } \operatorname{Cliff}(X)=\operatorname{Gon}(X)-2
$$

$\operatorname{Cliff}(X)=k-2$ if and only if X is a general k-gonal curve

Clifford index of smooth plane curve (Namba, 1979)

1. Let $X \in \mathbb{P}^{2}$ be a smooth plane curve of degree d.
2. We know that $\operatorname{gon}(X)=d-1$. $\left(\operatorname{Cliff}\left(g_{d-1}^{1}\right)=d-3\right)$
3. $\operatorname{Cliff}\left(g_{d}^{2}\right)=d-4$.
4. Let $g_{c+2 r}^{r}$ be a complete linear system computing the Clifford index of X. Then $r \geq 2$ and $c \leq(d-4)$.
5. Assume that $r \geq 3$ and $c \leq(d-5)$. Then $g_{c+2 r}^{r}$ induces a birational morphism by the KKM theorem.

Clifford index of smooth plane curve (Namba, 1979)

1. Let $X \in \mathbb{P}^{2}$ be a smooth plane curve of degree d.
2. We know that $\operatorname{gon}(X)=d-1$. $\left(\operatorname{Cliff}\left(g_{d-1}^{1}\right)=d-3\right)$
3. $\operatorname{Cliff}\left(g_{d}^{2}\right)=d-4$.
4. Let $g_{c+2 r}^{r}$ be a complete linear system computing the Clifford index of X. Then $r \geq 2$ and $c \leq(d-4)$.
5. Assume that $r \geq 3$ and $c \leq(d-5)$. Then $g_{c+2 r}^{r}$ induces a birational morphism by the KKM theorem.
6. If $C^{\prime}:=\varphi_{g_{c+2 r}^{r}}(X)$ is not contained in a hyperquadric of rank ≤ 4, then by the exact sequence

$$
0 \rightarrow \mathcal{I}_{C^{\prime}}(2) \rightarrow \mathcal{O}_{\mathbb{P}^{r}}(2) \rightarrow \mathcal{O}_{C^{\prime}}(2) \rightarrow 0,
$$

we have $h^{0}\left(2 g_{c+2 r}^{r}\right) \geq 4 r-2$ and hence

$$
c \leq \operatorname{Cliff}\left(2 g_{c+2 r}^{r}\right) \leq 2 c-4 r+6 \Rightarrow c+2 r \geq 6 r-6
$$

Clifford index of smooth plane curve (Namba, 1979)

7 By the theorem of Coppens-Martens, $\exists M$ with $\operatorname{deg}(M)=(2 r-3)$ and $\langle M\rangle_{g_{e}^{r}}=(r-2)$.
8 Projection from M to \mathbb{P}^{1} is induced by a linear system $g_{\leq(d-2)}^{1}$
9 It is a contradiction to the gonality of X.
10 If $C^{\prime}:=\varphi_{g_{c+2 r}^{r}}(X)$ is contained in a hyperquadric of rank ≤ 4, then $g_{c+2 r}^{r}=g_{e}^{1}+h_{e^{\prime}}^{1}$ and $g=2 c+5$
11 It is a contradiction since $g>2 c+5$.

Gonality and Clifford index

Coppens-Kato Theorem (1990)
If $Y:$ a plane curve with $d \geq 2 I+4(I \geq 3)$ and $\delta<(I-1) d$ and $\phi: X \rightarrow Y:$ a normalization of Y,
then $g_{2 d-9}^{1}=g_{e}^{1}+D_{2 d-9-e}$,
g_{e}^{1} : base point free linear system on X cut out by a pencil of lines in \mathbb{P}^{2}.

Gonality and Clifford index

Coppens-Kato Theorem (1990)

If $Y:$ a plane curve with $d \geq 2 I+4(I \geq 3)$ and $\delta<(I-1) d$ and $\phi: X \rightarrow Y:$ a normalization of Y,
then $g_{2 d-9}^{1}=g_{e}^{1}+D_{2 d-9-e}$,
g_{e}^{1} : base point free linear system on X cut out by a pencil of lines in \mathbb{P}^{2}.

Corollary

If $\phi: X \rightarrow Y:$ as above, then $\operatorname{Cliff}(X)=d-4$.

Proof.

Assume that $\operatorname{Cliff}(X) \leq d-5$ and \mathcal{L} computes the Clifford index. If $h^{0}(\mathcal{L}) \leq 3$, then $\operatorname{deg} \mathcal{L} \leq(d-5)+2\left(h^{0}(\mathcal{L})-1\right) \leq 2 d-9$.
Contradiction to Coppens-Kato Theorem. If $h^{0}(\mathcal{L}) \geq 4$, then by the secant theorem of Coppens and Martens, we get a contradiction.

Normal generation

- \mathcal{L} is normally generated if \mathcal{L} is very ample and $\operatorname{Sym}^{n} H^{0}(X, \mathcal{L}) \rightarrow H^{0}\left(X, \mathcal{L}^{\otimes n}\right)$ is surjective for all $n \geq 0$.
- Noether Theorem

The canonical bundle is normally generated unless X is a hyperelliptic.

Normal generation

- \mathcal{L} is normally generated if \mathcal{L} is very ample and $\operatorname{Sym}^{n} H^{0}(X, \mathcal{L}) \rightarrow H^{0}\left(X, \mathcal{L}^{\otimes n}\right)$ is surjective for all $n \geq 0$.
- Noether Theorem

The canonical bundle is normally generated unless X is a hyperelliptic.

- Castelnuovo, Mattuck, Mumford and Fujita proved any line bundle of degree at least $2 g+1$ is normally generated.
- Lange and Martens showed every vey ample line bundle of degree $2 g$ is normally generated unless X is a hyperelliptic.
- Arbarello, Cornalba, Griffiths and Harris stated A general line bundle of degree $\left[\frac{3}{2} g+2\right]$ or greater defines a projectively normal embedding if X is a sufficiently general curve of genus g.

Normal generation: extremal line bundle

Green-Lazarsfeld Theorem
For any smooth curve X of genus g with a very ample line bundle \mathcal{L},

$$
\begin{gathered}
\text { if } \operatorname{deg}(\mathcal{L}) \geq 2 g+1-2 \cdot h^{1}(\mathcal{L})-\operatorname{Cliff}(X), \\
\text { then } \mathcal{L} \text { is normally generated. }
\end{gathered}
$$

- Note that the condition $\operatorname{deg}(\mathcal{L}) \geq 2 g+1-2 \cdot h^{1}(\mathcal{L})-\operatorname{Cliff}(X)$ is equivalent to the assumption that $\operatorname{Cliff}(\mathcal{L})<\operatorname{Cliff}(X)$.
- A very ample line bundle \mathcal{L} is extremal if $\operatorname{Cliff}(\mathcal{L})=\operatorname{Cliff}(X)$ and \mathcal{L} fails to be normally generated.

Normal generation: extremal line bundle

Green-Lazarsfeld Theorem

For any smooth curve X of genus g with a very ample line bundle \mathcal{L},

$$
\begin{gathered}
\text { if } \operatorname{deg}(\mathcal{L}) \geq 2 g+1-2 \cdot h^{1}(\mathcal{L})-\operatorname{Cliff}(X), \\
\text { then } \mathcal{L} \text { is normally generated. }
\end{gathered}
$$

- Note that the condition $\operatorname{deg}(\mathcal{L}) \geq 2 g+1-2 \cdot h^{1}(\mathcal{L})-\operatorname{Cliff}(X)$ is equivalent to the assumption that $\operatorname{Cliff}(\mathcal{L})<\operatorname{Cliff}(X)$.
- A very ample line bundle \mathcal{L} is extremal if $\operatorname{Cliff}(\mathcal{L})=\operatorname{Cliff}(X)$ and \mathcal{L} fails to be normally generated.

Question;

- Find an extremal line bundle.
- Classify the normally generated line bundles \mathcal{L} with $\operatorname{Cliff}(\mathcal{L})=\operatorname{Cliff}(X)+\alpha$ for small α.

Theorem (Green-Lazarsfeld (1986))

Let $N(c)=\max \left\{\frac{(c+2)(c+3)}{2}, 10 c+6\right\}, g>N(c)$, where
$c=\operatorname{Cliff}(X) . X$ is neither hyperelliptic nor bielliptic.
\mathcal{L} is an extremal line bundle if and only if (X, \mathcal{L}) is one of;

	X	$h^{1}(\mathcal{L})$	$\phi_{\mathcal{L}}$
I.	Has a g_{c+2}^{1}	0	Embeds X with a 4-secant line
II.	$c=2 f \geq 4$ X is a double covering $\phi: X \rightarrow Y \subseteq \mathbb{P}^{2}$ of a smooth plane curve Y of degree $f+2$	1	Embeds X with a 4-secant line
III.	as in II	0	Embeds X with a 6-secant conic but no 4-secant line

Theorem (Green-Lazarsfeld (1986))

Let $N(c)=\max \left\{\frac{(c+2)(c+3)}{2}, 10 c+6\right\}, \mathbf{g}>\mathbf{N}(\mathbf{c})$, where
$c=\operatorname{Cliff}(X) . X$ is neither hyperelliptic nor bielliptic.
\mathcal{L} is an extremal line bundle if and only if (X, \mathcal{L}) is one of;

	X	$h^{1}(\mathcal{L})$	$\phi \mathcal{L}$
I.	Has a g_{c+2}^{1}	0	Embeds X with a 4-secant line
	$c=2 f \geq 4$ II.X is a double covering of a smooth plane curve Y of degree $f+2$	1	Embeds X with a 4-secant
line			

Note that for a general curve X of genus $g, g=2 c+1$ or $g=2 c+2$.

Theorem (Green-Lazarsfeld (1986))

Let $N(c)=\max \left\{\frac{(c+2)(c+3)}{2}, 10 c+6\right\}, \quad g>N(c)$, where $c=\operatorname{Cliff}(X) . X$ is neither hyperelliptic nor bielliptic.
\mathcal{L} is an extremal line bundle if and only if (X, \mathcal{L}) is one of;

	X	$h^{1}(\mathcal{L})$	$\phi_{\mathcal{L}}$
I.	Has a g_{c+2}^{1}	0	Embeds X with a 4-secant line
II.	$c=2 f \geq 4$ X is a double covering $\phi: X \rightarrow Y \subseteq \mathbb{P}^{2}$ of a smooth plane curve Y of degree $f+2$	1	Embeds X with a 4-secant line
III.	as in II	0	Embeds X with a 6-secant conic but no 4-secant line

Note that for a general curve X of genus $g, g=2 c+1$ or $g=2 c+2$.

Theorem (Green-Lazarsfeld (1986))

Let $N(c)=\max \left\{\frac{(c+2)(c+3)}{2}, 10 c+6\right\}, \quad g>N(c)$, where
$c=\operatorname{Cliff}(X) . X$ is neither hyperelliptic nor bielliptic.
\mathcal{L} is an extremal line bundle if and only if (X, \mathcal{L}) is one of;

	X	$h^{1}(\mathcal{L})$	$\phi_{\mathcal{L}}$
I.	Has a g_{c+2}^{1}	0	Embeds X with a 4-secant line
	$c=2 f \geq 4$ II. of a smooth plane curve Y of degree $f+2$		Embeds X with a 4-secant line
III.	as in II	0	Embeds X with a 6-secant conic but no 4-secant line

Note that for a general curve X of genus $g, g=2 c+1$ or $g=2 c+2$.

Theorem (GL Theorem 3)

- X : a smooth curve of genus g
- \mathcal{L} : a very ample line bundle on X with

$$
\operatorname{deg} \mathcal{L}> \begin{cases}\frac{3 g-3}{2}, & \mathcal{L} \text { is special } \tag{1}\\ \frac{3 g-3}{2}+2, & \mathcal{L} \text { is nonspecial. }\end{cases}
$$

If \mathcal{L} fails to be normally generated, then there is an effective divisor R such that $\varphi_{\mathcal{L}}(R)$ fails to impose independent conditions on quadrics and $\mathcal{A} \simeq \mathcal{L}(-\mathbf{R})$ satisfies

- $\operatorname{deg} A \geq \frac{g-1}{2}$,
- $\operatorname{Cliff}(\mathcal{A}) \leq \operatorname{Cliff}(\mathcal{L})$,
- $h^{1}(\mathcal{A}) \geq h^{1}(\mathcal{L})+2$ and $h^{0}(\mathcal{A}) \geq 2$.

Castelnuovo's genus bound
Let g_{d}^{r} : birationally very ample with $d-1=m(r-1)+\epsilon$,

$$
\begin{aligned}
0 & \leq \epsilon \leq r-2 \\
g \leq \pi(d, r) & :=\frac{m(m-1)}{2}(r-1)+m \epsilon
\end{aligned}
$$

If $r=2$, then $\pi(d, 2)=\frac{(d-1)(d-2)}{2}$.
If $r=3$ and d is even, then $d-1=2 m+1$, whence $g \leq\left(\frac{d-2}{2}\right)^{2}$.
If $r=3$ and d is odd, then $d-1=2 m$, whence $g \leq\left(\frac{d-1}{2}\right)\left(\frac{d-3}{2}\right)$.

Castelnuovo's genus bound

Let g_{d}^{r} : birationally very ample with $d-1=m(r-1)+\epsilon$,

$$
\begin{aligned}
0 & \leq \epsilon \leq r-2 \\
g \leq \pi(d, r): & =\frac{m(m-1)}{2}(r-1)+m \epsilon
\end{aligned}
$$

If $r=2$, then $\pi(d, 2)=\frac{(d-1)(d-2)}{2}$.
If $r=3$ and d is even, then $d-1=2 m+1$, whence $g \leq\left(\frac{d-2}{2}\right)^{2}$.
If $r=3$ and d is odd, then $d-1=2 m$, whence $g \leq\left(\frac{d-1}{2}\right)\left(\frac{d-3}{2}\right)$.

Kim-Kim Theorem (2004)
$\pi(d, r) \leq \pi(d-2, r-1)$ for $d \geq 3 r-2, r \geq 3$
If $d \geq 7$, then $\left(\frac{d-1}{2}\right)\left(\frac{d-3}{2}\right)=\pi(d, 3) \leq \pi(d-2,2)=\frac{(d-3)(d-4)}{2}$.

KKM Theorem (1990)

Let $g_{c+2 r}^{r}$: compute the Clifford index c of $X, d \leq g-1, r \geq 3$.
Then the $g_{c+2 r}^{r}$ is birationally very ample unless X is hyperelliptic or biellpitic.

KKM Theorem (1990)

Let $g_{c+2 r}^{r}$: compute the Clifford index c of $X, d \leq g-1, r \geq 3$. Then the $g_{c+2 r}^{r}$ is birationally very ample unless X is hyperelliptic or biellpitic.

- So, if g_{d}^{r} : compute the Clifford index c of X with proper range of $d, r \geq 3$, then the g_{d}^{r} is birationally very ample.
- But the genus is big compared to d, r, g_{d}^{r} is not birational by the Castelnuovo's genus bound.
- Therefore g_{d}^{r} gives a multiple covering of the plane curves or \mathbb{P}^{1}.

Note for $g>\frac{(c+2)(c+3)}{2}$

A smooth plane curve X of degree $d \geq 4$

- $g=\frac{(d-1)(d-2)}{2}, c:=\operatorname{Cliff}(X)=d-4$. Therefore, $\mathrm{g}=\frac{(\mathrm{c}+2)(\mathrm{c}+3)}{2}$.
- $D=H-Z_{4}$, where Z_{4} is 4 collinear points and H is a line section of X.
- $K_{X}-D$ is very ample since $h^{0}(D+p+q)=1$ for any $p, q \in X$.
- $h^{0}\left(\mathcal{K}_{X}-D\right)=(2 g-2)-(d-4)-g+1+1$. Therefore $\operatorname{Cliff}\left(\mathcal{K}_{X}-D\right)=d-4$.
- $h^{0}\left(\mathcal{K}_{X}-D\right)-h^{0}\left(\mathcal{K}_{X}\left(-D-Z_{4}\right)\right)=2=<D>_{\mathcal{K}_{X}-D}+1$.
- $\mathcal{K}_{X}-D$ is an extremal line bundle with $h^{1}\left(\mathcal{K}_{X}-D\right)=1$.

1. An extremal line bundle with $h^{1}(\mathcal{L}) \geq 2$

An extremal line bundle with $h^{1}(\mathcal{L}) \geq 2$

Theorem(CKK, 2007)
Assume that

- X is neither hyperelliptic nor bielliptic with $g \geq 2 c+5$, where g is the genus of X and c is the Clifford index of X.
- A very ample line bundle \mathcal{M} computes the Clifford index of X with $(3 c / 2)+3<\operatorname{deg} \mathcal{M} \leq g-1$,
then

An extremal line bundle with $h^{1}(\mathcal{L}) \geq 2$

Theorem(CKK, 2007)
Assume that

- X is neither hyperelliptic nor bielliptic with $g \geq 2 c+5$, where g is the genus of X and c is the Clifford index of X.
- A very ample line bundle \mathcal{M} computes the Clifford index of X with $(3 c / 2)+3<\operatorname{deg} \mathcal{M} \leq g-1$,
then
- $g=2 c+5$ and $\mathcal{M}=\mathcal{F} \otimes \mathcal{F}^{\prime}$, where $|\mathcal{F}|,\left|\mathcal{F}^{\prime}\right|$ are pencils of degree $c+2$,
- $\mathcal{M} \otimes \mathcal{F}$ is an extremal line bundle with $h^{0}(\mathcal{M} \otimes \mathcal{F}) \geq 2$, and $h^{1}(\mathcal{M} \otimes \mathcal{F})=2$.
- \mathcal{M} is half-canonical unless X is a $(c+2) / 2$-fold covering of an elliptic curve.

Theorem (CKK)

If

- $S \subset \mathbb{P}^{r}$ be a general K3 surface with $\operatorname{Pic}(S)=<H>$ where H is a hyperplane section and degS $=2 r-2$ and
- $X \subset S$ be a smooth irreducible curve and $X \in|2 H|$,
then
- $\mathcal{O}_{X}(1)$ is half-canonical, normally generated, and computes the Clifford index of X,
- while there is a base point free pencil $|\mathcal{F}|$ such that $\mathcal{O}_{X}(1) \otimes \mathcal{F}$ is an extremal line bundle with $h^{1}\left(\mathcal{O}_{X}(1) \otimes \mathcal{F}\right)=2$.

Proof

1. Since $X \in|2 H|, \mathcal{O}_{X}(2)$ is the canonical bundle of X with $g(X)=(2 H)^{2} / 2+1=4 r-3, \operatorname{deg}(X)=(2 H)(H)=4(r-1)$. (Note that $\operatorname{deg}(S)=2 r-2$.)
2. According to Green's and Lazarsfeld's method of computing the Clifford index of smooth curves on a K3 surface, $\mathcal{O}_{X}(1)$ computes the Clifford index of $X . \therefore$ Cliff $(X)=2 r-4$.
3. $g(X) \geq 2 c+5$ and $\operatorname{deg} \mathcal{O}_{X}(1) \leq g(X)-1$.
4. The curve X lies on a hyperquadric of rank ≤ 4.
5. The pencil $|\mathcal{F}|$ is induced by the ruling of the hyperquadric.
6. One can prove that $\mathcal{O}_{X}(1) \otimes \mathcal{F}$ is an extremal line bundle on X with $h^{1}(\mathcal{L})=2$.

Proof

1. Since $X \in|2 H|, \mathcal{O}_{X}(2)$ is the canonical bundle of X with $g(X)=(2 H)^{2} / 2+1=4 r-3, \operatorname{deg}(X)=(2 H)(H)=4(r-1)$. (Note that $\operatorname{deg}(S)=2 r-2$.)
2. According to Green's and Lazarsfeld's method of computing the Clifford index of smooth curves on a K3 surface, $\mathcal{O}_{X}(1)$ computes the Clifford index of $X . \therefore$ Cliff $(X)=2 r-4$.
3. $g(X) \geq 2 c+5$ and $\operatorname{deg} \mathcal{O}_{X}(1) \leq g(X)-1$.
4. The curve X lies on a hyperquadric of rank ≤ 4.
5. The pencil $|\mathcal{F}|$ is induced by the ruling of the hyperquadric.
6. One can prove that $\mathcal{O}_{X}(1) \otimes \mathcal{F}$ is an extremal line bundle on X with $h^{1}(\mathcal{L})=2$.

Hence for any $g \equiv 1(\bmod 4)$, there is a smooth curve X of genus g such that X has a extremal line bundle and a non-extremal line bundle which compute the clifford index of X.
2. Nearly extremal line bundles

Nearly extremal line bundles(Akohori(2005), CKK(in progress)) Assume that $g \geq \max \left\{\frac{(c+4)(c+3)}{2}, 2 c+13\right\}, c:=\operatorname{Cliff}(X), f:=\frac{c}{2}$ and that X is neither hyperelliptic nor bielliptic. Let \mathcal{L} is an line bundle on X with $\operatorname{deg}(\mathcal{L})=2 g-1-2 h^{1}(\mathcal{L})-c$, i.e.
$\operatorname{Cliff}(\mathcal{L})=\operatorname{Cliff}(X)+1$. Then \mathcal{L} is very ample and fails to be normally generated if and only if the pair (X, \mathcal{L}) is the following cases:

(i)	$\begin{aligned} & \phi: C \xrightarrow{m: 1} \mathbb{P}^{1}, c+2 \leq m \leq c+3, \\ & \quad \mathcal{L} \simeq \mathcal{K}-g_{m}^{1}-B_{c+3-m}+R_{4}, R_{4} \in C_{4}, h^{1}(\mathcal{L})=0 \end{aligned}$
(ii)	$\begin{aligned} \phi: C \xrightarrow{2: 1} C^{\prime} \subset \mathbb{P}^{2}, \operatorname{deg}\left(C^{\prime}\right)=f+2, c=2 f \geq 4 \\ \mathcal{L} \simeq \mathcal{K}-\phi^{*} g_{f+2}^{2}+R_{5}, R_{5} \in C_{5}, h^{1}(\mathcal{L})=0 \end{aligned}$
(iii)	$\begin{aligned} & \phi: C \xrightarrow{3: 1} C^{\prime} \subset \mathbb{P}^{2}, \operatorname{deg}\left(C^{\prime}\right)=\frac{5+c}{3}=: h \geq 3, \\ & \quad \mathcal{L} \simeq \mathcal{K}-\phi^{*} g_{h}^{2}+R_{6}, R_{6} \in C_{6}, h^{1}(\mathcal{L})=0 \end{aligned}$
(iv)	$\begin{aligned} & \phi: C \xrightarrow{3: 1} C^{\prime} \subset \mathbb{P}^{2}, \operatorname{deg}\left(C^{\prime}\right)=\frac{5+c}{3}=: h \geq 4, \\ & \mathcal{L} \simeq \mathcal{K}-\phi^{*} g_{h}^{2}+R_{4}, R_{4} \in C_{4}, h^{1}(\mathcal{L})=1 \end{aligned}$
(v)	$\phi: C \xrightarrow{\sim} C^{\prime} \subset \mathbb{P}^{2}, \mathcal{L} \simeq \mathcal{K}-g_{c+5}^{2}+R_{4}, R_{4} \in C_{4}, h^{1}(\mathcal{L})=1$
(vi)	$\phi: C \xrightarrow{\sim} C^{\prime} \subset \mathbb{P}^{2}, \mathcal{L} \simeq \mathcal{K}-g_{c+5}^{2}+R_{6}, R_{6} \in C_{6}, h^{1}(\mathcal{L})=0$

Proof

- If \mathcal{L} is extremal, then by the GL Theorem 3, there exists a line bundle \mathcal{A} with $\operatorname{Cliff}(\mathcal{A})=\operatorname{Cliff}(X)+1$ (or $\operatorname{Cliff}(\mathcal{A})=\operatorname{Cliff}(X))$ and $h^{0}(\mathcal{A}) \geq 2$ and $h^{1}(\mathcal{A}) \geq 2$.
- The following Ballico-Keem theorem tells that a special linear series $\left|\mathcal{K}_{X} \mathcal{A}^{-1}\right|=g_{2 r+c+1}^{r}, r \geq 3$ is birationally very ample.
- The condition $g>\max \left\{\frac{(c+4)(c+3)}{2}, 2 c+13\right\}$ gives that any morphism to $\mathbb{P}^{r}, r \geq 3$ can not be birationally very ample by the Castelnuovo genus bound.
- So $\left|\mathcal{K}_{X} \mathcal{A}^{-1}\right|$ induces a covering morphism to a plane curve or $\left|\mathcal{K}_{X} \mathcal{A}^{-1}\right|$ is a pencil.

Proof

- If \mathcal{L} is extremal, then by the GL Theorem 3, there exists a line bundle \mathcal{A} with $\operatorname{Cliff}(\mathcal{A})=\operatorname{Cliff}(X)+1$ (or $\operatorname{Cliff}(\mathcal{A})=\operatorname{Cliff}(X))$ and $h^{0}(\mathcal{A}) \geq 2$ and $h^{1}(\mathcal{A}) \geq 2$.
- The following Ballico-Keem theorem tells that a special linear series $\left|\mathcal{K}_{X} \mathcal{A}^{-1}\right|=g_{2 r+c+1}^{r}, r \geq 3$ is birationally very ample.
- The condition $g>\max \left\{\frac{(c+4)(c+3)}{2}, 2 c+13\right\}$ gives that any morphism to $\mathbb{P}^{r}, r \geq 3$ can not be birationally very ample by the Castelnuovo genus bound.
- So $\left|\mathcal{K}_{X} \mathcal{A}^{-1}\right|$ induces a covering morphism to a plane curve or $\left|\mathcal{K}_{X} \mathcal{A}^{-1}\right|$ is a pencil.

Theorem (BK, 1991)
Let a $|D|=g_{2 r+c+1}^{r}, r \geq 3$ be a special linear series without base point on curve X with Clifford index $c \geq 1$
such that $r\left(\mathcal{K}_{X}-D\right) \geq 1$. Then $|D|$ is birationally very ample.

Extremal line bundles(CKK(in progress))

$g>\max \{\pi(c+4,2), 2 c+11\}$ where $c:=\operatorname{Cliff}(X)$ and $f:=\frac{c}{2}$ and that X is neither hyperelliptic nor elliptic-hyperelliptic. Let \mathcal{L} is an line bundle on X with $\operatorname{deg} \mathcal{L}:=2 g-2 h^{1}(\mathcal{L})-c$. Then \mathcal{L} is very ample and fails to be normally generated if and only if the pair (X, \mathcal{L}) is the following cases:

	X	$h^{1}(\mathcal{L})$	\mathcal{L}	conditinos of $R_{a} \in X_{a}$
I	$\phi: X \xrightarrow{(c+2): 1} \mathbb{P}^{1}$ ϕ doesn't factor through $\psi: X \xrightarrow{2: 1} Y \subset \mathbb{P}^{2}$ for a smooth Y $\operatorname{deg} Y=f+2$	0	$\begin{gathered} \mathcal{K}_{X}-g_{c+2}^{1}+R_{4} \\ \left\langle R_{4}\right\rangle_{\mathcal{L}}: 4 \text {-secant line } \end{gathered}$	$\begin{gathered} \operatorname{deg}\left(F, R_{4}\right) \leq 1, \\ \forall F \in g_{c+2}^{1} \end{gathered}$
II.	$\phi: X \xrightarrow{2: 1} Y \subset \mathbb{P}^{2}$ for a smooth Y with $\operatorname{deg} Y=f+2$	1	$\begin{gathered} \mathcal{K}_{X}-\phi^{*} g_{f}^{2}+R_{4} \\ \left\langle R_{4}\right\rangle_{\mathcal{L}}: 4 \text {-secant line } \end{gathered}$	$\begin{gathered} R_{4} \leq \phi^{*}(H), H \in\left\|\mathcal{O}_{Y}(1)\right\| \\ \operatorname{deg}\left(\phi^{*}(Q), R_{4}\right) \leq 1, \\ \forall H \in\left\|\mathcal{O}_{Y}(1)\right\|, Q \leq H \end{gathered}$
$\begin{aligned} & \text { III. } \\ & (1) \end{aligned}$	As in II	0	$\begin{gathered} \mathcal{K}_{X}-\phi^{*} g_{f}^{2}+R_{6} \\ \phi_{\mathcal{L}}\left(R_{6}\right) \subset \Omega \end{gathered}$ for an irreducible conic $\tilde{\Omega}$ in the plane $\left\langle R_{6}\right\rangle_{\mathcal{L}}$	$\begin{gathered} \operatorname{deg}\left(\phi^{*}(Q), R_{6}\right) \leq 1, \forall Q \in Y \\ \operatorname{deg}\left(\phi^{*}(H), R_{6}\right) \leq 2, \\ \forall H \in\left\|\mathcal{O}_{Y}(1)\right\| \\ R_{6} \leq \phi^{*}(\Omega . Y) \\ \Omega:=\left(\phi \circ \phi_{\mathcal{L}}^{-1}\right)(\tilde{\Omega}) \in\left\|\mathcal{O}_{\mathbb{P}^{2}}(2)\right\| \\ \hline \end{gathered}$
$\begin{aligned} & \hline \text { III. } \\ & (2) \end{aligned}$	As in II	0	$\begin{gathered} \mathcal{K}_{X}-\phi^{*} g_{f}^{2}+R_{6} \\ \phi_{\mathcal{L}}\left(R_{6}\right) \subset \tilde{L}_{1} \cup \tilde{L}_{2} \\ \text { as a scheme in the } \\ \text { plane }\left\langle R_{6}\right\rangle_{\mathcal{L}} \end{gathered}$	$\begin{gathered} \operatorname{deg}\left(\phi^{*}(Q), R_{6}\right) \leq 1, \forall Q \in Y \\ \left(\phi \circ \phi^{-1}\right)\left(\tilde{L}_{i}\right)=L_{i}: \text { line } \\ \operatorname{deg}\left(\phi^{*}\left(H_{i}\right), R_{6}\right)=3 \\ \forall H_{i}:=L_{i} \cdot Y, i=1,2 \\ \hline \end{gathered}$

3. Multiple coverings of plane curves with small number of double points

In this talk, I just deal with the multiple covering of smooth plane curves.

Theorem(Multiple coverings of smooth plane curves)
X : a simple n-fold covering $\phi: X \rightarrow Y$ for a smooth plane curve Y of degree d with $g(X)>n(g(Y))+n(n-1) d+4 n^{2}(n-1)$. $\mathcal{L}:$ a line bundle, $\operatorname{deg} \mathcal{L} \geq 2 g-2 h^{1}(X, \mathcal{L})-\operatorname{Cliff}(X)-(n-2)$. Then, \mathcal{L} is very ample and fails to be normally generated if and only if \mathcal{L} corresponds to one of the cases in the following table.

Theorem(Multiple coverings of smooth plane curves)
X : a simple n-fold covering $\phi: X \rightarrow Y$ for a smooth plane curve Y of degree d with $g(X)>n(g(Y))+\mathbf{n}(\mathbf{n}-\mathbf{1}) \mathbf{d}+4 \mathbf{n}^{2}(\mathbf{n}-\mathbf{1})$. $\mathcal{L}:$ a line bundle, $\operatorname{deg} \mathcal{L} \geq 2 g-2 h^{1}(X, \mathcal{L})-\operatorname{Cliff}(X)-(n-2)$. Then, \mathcal{L} is very ample and fails to be normally generated if and only if \mathcal{L} corresponds to one of the cases in the following table.

Theorem(Multiple coverings of smooth plane curves)

X : a simple n-fold covering $\phi: X \rightarrow Y$ for a smooth plane curve Y of degree d with $\mathbf{g}(\mathbf{X})>\mathbf{n}(\mathbf{g}(\mathbf{Y}))+\mathbf{n}(\mathbf{n}-\mathbf{1}) \mathbf{d}+4 \mathbf{n}^{2}(\mathbf{n}-\mathbf{1})$. $\mathcal{L}:$ a line bundle, $\operatorname{deg} \mathcal{L} \geq 2 g-2 h^{1}(X, \mathcal{L})-\operatorname{Cliff}(X)-(n-2)$. Then, \mathcal{L} is very ample and fails to be normally generated if and only if \mathcal{L} corresponds to one of the cases in the following table.

Remark

- If $\operatorname{deg}(Y)$ is large compared with n, the genus bound $g>n(g(Y))+n(n-1) d+4 n^{2}(n-1)$ is not so restrictive by Riemann-Hurwitz theorem which tells that

$$
g \geq n(g(Y))-(n-1)
$$

- Theorem explores necessary and sufficient conditions for the failure of normal generation of a very ample line bundle \mathcal{L} with $\operatorname{Cliff}(\mathcal{L}) \leq \operatorname{Cliff}(X)+(n-2)$, i.e., $\operatorname{deg} \mathcal{L} \geq 2 g-2 h^{1}(\mathcal{L})-\operatorname{Cliff}(X)-(n-2)$.

	description for \mathcal{L}	$\begin{gathered} h^{1}(X, \mathcal{L}) \\ \operatorname{Cliff}(\mathcal{L}) \end{gathered}$	conditions of R_{a}
I	$\begin{aligned} \mathcal{L} & \simeq \mathcal{K}_{X}-\phi^{*} g_{d}^{2}+R_{4}, \\ & \operatorname{dim}\left\langle R_{4}\right\rangle_{\mathcal{L}}=1 \end{aligned}$	$\stackrel{1}{\operatorname{Cliff}(X)+(n-2)}$	$\begin{gathered} R_{4} \leq \phi^{*} H \text { for some } H \in g_{d}^{2} \\ \operatorname{deg}\left(R_{4}, \Phi^{-1}(Q)\right) \leq 1 \\ \text { for any } Q \in \psi(Y) \subset \mathbb{P}^{2} \end{gathered}$
II	$\begin{gathered} \mathcal{L} \simeq \mathcal{K}_{X}-\left(\phi^{*} g_{d-1}^{1}+B\right)+R_{4} \\ \operatorname{dim}\left\langle R_{4}\right\rangle_{\mathcal{L}}=1 \end{gathered}$ B is a base locus of $\mathcal{K}_{X} \otimes \mathcal{L}^{-1}\left(R_{4}\right)$	$\begin{gathered} 0 ; \\ \mathrm{Cliff}(X)+k, \\ 0 \leq k \leq n-2, \\ k:=\operatorname{deg}(B) \end{gathered}$	$\begin{gathered} g_{d-1}^{1}=g_{d}^{2}(-Q) \text { for some } Q \in Y ; \\ \operatorname{deg}\left(R_{4}, \phi^{*}(H-Q)\right) \leq 1 \\ \text { for any } H \in g_{d}^{2} \text { with } H \geq Q ; \\ R_{4} \not \phi^{*}(H) \text { if } B \leq \phi^{*}(Q) \\ \text { and } \operatorname{deg}\left(\phi^{*}(Q)-B\right) \leq 2 ; \\ \operatorname{deg} B \leq n-2, \operatorname{deg}\left(B, R_{4}\right)=0 \\ \hline \end{gathered}$
III	$\begin{gathered} \mathcal{L} \simeq \mathcal{K}_{X}-\phi^{*} g_{d}^{2}+R_{6} \\ R_{6} \leq \varphi_{\mathcal{L}}(X) \cap \tilde{\Omega} \end{gathered}$ for an irreducible conic $\tilde{\Omega}$ in the plane $\left\langle R_{6}\right\rangle_{\mathcal{L}}$; $\varphi_{\mathcal{L}}(X)$ has no trisecant line	$\begin{gathered} 0 \\ \operatorname{Cliff}(X)+(n-2) \end{gathered}$	$\operatorname{deg}\left(R_{6}, \phi^{-1}(Q)\right) \leq 1$ for any $Q \in Y$; $\operatorname{deg}\left(R_{6}, \phi^{*}(H)\right) \leq 2$ for any $H \in g_{d}^{2}$; $R_{6} \leq \phi^{*}(\Omega)$ for some $\Omega \in\left\|2 g_{d}^{2}\right\|$ with $\Omega \neq H_{1}+H_{2}$ for any $H_{i} \in g_{d}^{2}$
IV	$\begin{gathered} \mathcal{L} \simeq \mathcal{K}_{X}-\phi^{*} g_{d}^{2}+R_{6} \\ R_{6}=R_{3}^{(1)}+R_{3}^{(2)}, \\ R_{3}^{(i)}:=\left(R_{6}, \varphi_{\mathcal{L}}(X) \cap L_{i}\right) \\ L_{i}: \text { a line in the plane }\left\langle R_{6}\right\rangle_{\mathcal{L}} \end{gathered}$	$\stackrel{0}{\mathrm{Cliff}}(X)+(n-2)$	$\begin{gathered} \operatorname{deg}\left(R_{6}, \phi^{-1}(Q)\right) \leq 1 \text { for any } Q \in Y ; \\ R_{6}=R_{3}^{(1)}+R_{3}^{(2)} \text { with } \\ R_{3}^{(i)} \leq \phi^{*}\left(H_{i}\right) \text { for some } H_{i} \in g_{d}^{2} \end{gathered}$

	description for \mathcal{L}	$\begin{gathered} h^{1}(X, \mathcal{L}) \\ \operatorname{Cliff}(\mathcal{L}) \end{gathered}$	conditions of R_{a}
I	$\begin{aligned} & \mathcal{L} \simeq \mathcal{K}_{X}-\phi^{*} g_{d}^{2}+R_{4} \\ & \operatorname{dim}\left\langle R_{4}\right\rangle_{\mathcal{L}}=1 \end{aligned}$	$\stackrel{1 ;}{\operatorname{Cliff}(X)}+(n-2)$	$\begin{gathered} R_{4} \leq \phi^{*} H \text { for some } H \in g_{d}^{2} \\ \operatorname{deg}\left(R_{4}, \Phi^{-1}(Q)\right) \leq 1 \\ \text { for any } Q \in \psi(Y) \subset \mathbb{P}^{2} \end{gathered}$
II	$\begin{gathered} \mathcal{L} \simeq \mathcal{K}_{X}-\left(\phi^{*} g_{d-1}^{1}+B\right)+R_{4}, \\ \operatorname{dim}\left\langle R_{4}\right\rangle_{\mathcal{L}}=1 ; \\ B \text { is a base locus } \\ \text { of } \mathcal{K}_{X} \otimes \mathcal{L}^{-1}\left(R_{4}\right) \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{Cliff}(X)+k, \\ 0 \leq k \leq n-2, \\ k:=\operatorname{deg}(B) \end{gathered}$	$\begin{gathered} g_{d-1}^{1}=g_{d}^{2}(-Q) \text { for some } Q \in Y ; \\ \operatorname{deg}\left(R_{4}, \phi^{*}(H-Q)\right) \leq 1 \\ \text { for any } H \in g_{d}^{2} \text { with } H \geq Q ; \\ \left.R_{4} \not \phi^{*}(H)\right) \text { if } B \leq \phi^{*}(Q) \\ \text { and } \operatorname{deg}\left(\phi^{*}(Q)-B\right) \leq 2 ; \\ \operatorname{deg} B \leq n-2, \operatorname{deg}\left(B, R_{4}\right)=0 \\ \hline \end{gathered}$
III	$\begin{gathered} \mathcal{L} \simeq \mathcal{K}_{X}-\phi^{*} g_{d}^{2}+R_{6} \\ R_{6} \leq \varphi_{\mathcal{L}}(X) \cap \tilde{\Omega} \end{gathered}$ for an irreducible conic $\tilde{\Omega}$ in the plane $\left\langle R_{6}\right\rangle_{\mathcal{L}}$; $\varphi_{\mathcal{L}}(X)$ has no trisecant line	$\stackrel{0}{\mathrm{Cliff}}(X)^{+}+(n-2)$	$\operatorname{deg}\left(R_{6}, \phi^{-1}(Q)\right) \leq 1$ for any $Q \in Y$; $\operatorname{deg}\left(R_{6}, \phi^{*}(H)\right) \leq 2$ for any $H \in g_{d}^{2}$; $R_{6} \leq \phi^{*}(\Omega)$ for some $\Omega \in\left\|2 g_{d}^{2}\right\|$ with $\Omega \neq H_{1}+H_{2}$ for any $H_{i} \in g_{d}^{2}$
IV	$\begin{gathered} \mathcal{L} \simeq \mathcal{K}_{X}-\phi^{*} g_{d}^{2}+R_{6} \\ R_{6}=R_{3}^{(1)}+R_{3}^{(2)} \\ R_{3}^{(i)}:=\left(R_{6}, \varphi_{\mathcal{L}}(X) \cap L_{i}\right) \\ L_{i}: \text { a line in the plane }\left\langle R_{6}\right\rangle_{\mathcal{L}} \end{gathered}$	$\begin{gathered} 0 ; \\ \operatorname{Cliff}(X)+(n-2) \end{gathered}$	$\begin{gathered} \operatorname{deg}\left(R_{6}, \phi^{-1}(Q)\right) \leq 1 \text { for any } Q \in Y ; \\ R_{6}=R_{3}^{(1)}+R_{3}^{(2)} \text { with } \\ R_{3}^{(i)} \leq \phi^{*}\left(H_{i}\right) \text { for some } H_{i} \in g_{d}^{2} \end{gathered}$

Remark

This theorem gives not only concrete constructions but also the existence of large family of such nearly extremal line bundles \mathcal{L}, since \mathcal{L} can be constructed by choosing divisors R_{a} on X in the right boxes of the table.

Lemma A
Assume that $\phi: X \rightarrow Y$ satisfy the hypotheses in Theorem. Let \mathcal{M} be a globally generated line bundle on X with $\operatorname{deg} \mathcal{M} \leq g-1$ and $h^{0}(\mathcal{M}) \geq 2$.

If $\operatorname{Cliff}(\mathcal{M}) \leq n d-4$, then
$\mathcal{M} \simeq \phi^{*}\left(g_{d}^{2}\right)$ or $\mathcal{M} \simeq \phi^{*}\left(g_{d}^{2}\right)(-Q)$ where $Q \in Y$. In particular, we obtain $\operatorname{Cliff}(X)=n d-n-2$,.

Lemma A

Assume that $\phi: X \rightarrow Y$ satisfy the hypotheses in Theorem.
Let \mathcal{M} be a globally generated line bundle on X with $\operatorname{deg} \mathcal{M} \leq g-1$ and $h^{0}(\mathcal{M}) \geq 2$.

If $\operatorname{Cliff}(\mathcal{M}) \leq n d-4$, then
$\mathcal{M} \simeq \phi^{*}\left(g_{d}^{2}\right)$ or $\mathcal{M} \simeq \phi^{*}\left(g_{d}^{2}\right)(-Q)$ where $Q \in Y$.
In particular, we obtain $\operatorname{Cliff}(X)=n d-n-2$,.

Proof of the Theorem
Step 1. To apply Green-Lazarsfeld Theorem, check the condition (1) in (GL Theorem 3), i.e.,

$$
\operatorname{deg} \mathcal{L}> \begin{cases}\frac{3 g-3}{2}, & \mathcal{L} \text { is special } \\ \frac{3 g-3}{2}+2, & \mathcal{L} \text { is nonspecial. }\end{cases}
$$

Step 2. According to GL Theorem, there is a line bundle

$$
\mathcal{A} \simeq \mathcal{L}(-R), \quad R>0
$$

such that both \mathcal{A} and R satisfy all the conditions in that theorem, i.e.,

- R fails to impose independent conditions on quadrics and
- $\operatorname{deg} A \geq \frac{\mathrm{g}-1}{2}$,
- $\operatorname{Cliff}(\mathcal{A}) \leq \operatorname{Cliff}(\mathcal{L})$,
- $h^{1}(\mathcal{A}) \geq h^{1}(\mathcal{L})+2$ and $h^{0}(\mathcal{A}) \geq 2$.

Step 2. According to GL Theorem, there is a line bundle

$$
\mathcal{A} \simeq \mathcal{L}(-R), \quad R>0
$$

such that both \mathcal{A} and R satisfy all the conditions in that theorem, i.e.,

- R fails to impose independent conditions on quadrics and
- $\operatorname{deg} A \geq \frac{\mathrm{g}-1}{2}$,
- $\operatorname{Cliff}(\mathcal{A}) \leq \operatorname{Cliff}(\mathcal{L})$,
- $h^{1}(\mathcal{A}) \geq h^{1}(\mathcal{L})+2$ and $h^{0}(\mathcal{A}) \geq 2$.

Step 3. Prove that $\operatorname{deg} A \geq g-1$. Therefore $\operatorname{deg} \mathcal{K} A^{-1} \leq g-1$.
Step 4. Apply Lemma A, we get

$$
\mathcal{L} \simeq \mathcal{K}_{X}-\phi^{*} g_{d}^{2}+R \text { or } \mathcal{L} \simeq \mathcal{K}_{X}-\left(\phi^{*} g_{d}^{2}(-(Q))+B\right)+R,
$$

for some effective divisor R on X which fails to impose independent conditions on quadrics in $\mathbb{P} H^{0}(\mathcal{L})^{*}$.

Step 5. Assume $\mathcal{L} \simeq \mathcal{K}_{X}-\phi^{*} g_{d}^{2}+R$. Since $\operatorname{Cliff}(\mathcal{A}) \leq \operatorname{Cliff}(\mathcal{L})$, $\operatorname{Cliff}(\mathcal{L})=n d-4$. Hence $\operatorname{deg} R=6-2 h^{1}(\mathcal{L})$ by the RR Theorem. The condition $h^{1}(X, \mathcal{L}) \leq h^{1}(X, \mathcal{A})-2$ forces $h^{1}(\mathcal{L}) \leq 1 . \therefore \mathcal{L}$ corresponds to one of the following cases;
Case 1. $\mathcal{L} \simeq \mathcal{K}_{X}-\phi^{*} g_{d}^{2}+R_{4}$ with $h^{1}(\mathcal{L})=1$.
Case 2. $\mathcal{L} \simeq \mathcal{K}_{X}-\phi^{*} g_{d}^{2}+R_{6}$ with $h^{1}(\mathcal{L})=0$.

Step 5. Assume $\mathcal{L} \simeq \mathcal{K}_{X}-\phi^{*} g_{d}^{2}+R$. Since $\operatorname{Cliff}(\mathcal{A}) \leq \operatorname{Cliff}(\mathcal{L})$, $\operatorname{Cliff}(\mathcal{L})=n d-4$. Hence $\operatorname{deg} R=6-2 h^{1}(\mathcal{L})$ by the RR Theorem. The condition $h^{1}(X, \mathcal{L}) \leq h^{1}(X, \mathcal{A})-2$ forces $h^{1}(\mathcal{L}) \leq 1 . \therefore \mathcal{L}$ corresponds to one of the following cases;
Case 1. $\mathcal{L} \simeq \mathcal{K}_{X}-\phi^{*} g_{d}^{2}+R_{4}$ with $h^{1}(\mathcal{L})=1$.
Case 2. $\mathcal{L} \simeq \mathcal{K}_{X}-\phi^{*} g_{d}^{2}+R_{6}$ with $h^{1}(\mathcal{L})=0$.
Step 6. Assume $\mathcal{L} \simeq \mathcal{K}_{X}-\left(\phi^{*} g_{d}^{2}(-Q)+B\right)+R_{a}, R_{a} \in X^{(a)}$. Since $h^{0}\left(\mathcal{K}_{X} \otimes \mathcal{A}^{-1}\right)=h^{1}(\mathcal{A})=2$, we have $h^{1}(\mathcal{L})=0$.
Note that $\operatorname{dim}\left\langle R_{a}\right\rangle_{\mathcal{L}}=a-3$ due to RR Theorem.
Since $\operatorname{Cliff}(\mathcal{A}) \leq \operatorname{Cliff}(\mathcal{L})$ by GL Theorem 3, we have $a \geq 2(a-3)+2$, i.e., $a \leq 4$.
If $a<4$, then $\mathcal{L} \simeq \mathcal{K}_{X}-\left(\phi^{*} g_{d}^{2}(-Q)+B-P\right)+\left(R_{a}-P\right)$ for $P \leq R_{a}$ which is not very ample. Thus we get $a=4$ and $\operatorname{deg}\left(B, R_{4}\right)=0$. Therefore \mathcal{L} is
Case 3. $\mathcal{L} \simeq \mathcal{K}_{X}-\left(\phi^{*} g_{d}^{2}(-Q)+B\right)+R_{4}$ with $h^{1}(\mathcal{L})=0, Q \in Y$.

Thank you!!!

